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Abstract

In this paper, we propose a simple testing procedure to detect the presence of nonstationarity
against nonlinear but globally stationary exponential smooth transition autoregressive processes.
We provide an advance over the existing literature in three senses. First, we derive the limiting
nonstandard distribution of the proposed tests. Second, we 0nd via Monte Carlo simulation
exercises that under the alternative of a globally stationary ESTAR process, our proposed test
has better power than the standard Dickey–Fuller test, in the region of the null, where the
processes are highly persistent. Third, we provide an application to ex post real interest rates
and bilateral real exchange rates with the US Dollar from the 11 major OECD countries, and 0nd
our test is able to reject a unit root in many cases, whereas the linear DF tests fail, providing
some evidence of nonlinear mean-reversion in both real interest and exchange rates.
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1. Introduction

There is a growing dissatisfaction with the standard linear ARMA framework which
investigators use to test for unit roots. Much of this arises from the fact that in several
areas of economics a theoretical prediction of stationarity is confounded in practice by
the persistent failure of the standard Dickey–Fuller (DF) test to reject the null of a
unit root. For example, in international monetary economics the regular 0nding of a
unit root in real exchange rates causes discomfort to economists who wish to build
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models around a long run purchasing power parity (PPP) relationship (e.g., Taylor
et al., 2001). Another notable area of discomfort occurs in macro-0nance where appar-
ent unit root behaviour in real interest rates violates mean reversion in the aggregate
marginal product of capital and makes the adherence to simple constant returns to scale
production functions used in modern macroeconomic growth and RBC theory hard to
maintain (see for example Rose, 1988).
Some authors have accepted the results of the tests and have reformulated the eco-

nomic theory. For example, Edison and Kloveland (1987) point out that whilst the
homogeneity postulate behind the standard view of PPP is only likely to hold in the
long run, long runs of data may encounter regime changes in tastes and technology
which in turn imply permanent movements in the terms of trade or in the relative
price of traded to nontraded goods. They 0nd that adjusting for “general equilibrium”
shocks, enables them to reject the unit root in real exchange rates and provide support
for the PPP hypothesis. Increasingly though, investigators are looking to alternative
frameworks within which to test for unit roots. The literature here has two branches.
The 0rst focuses on the use of panel data and its role in increasing the power of
standard unit root tests. Abuaf and Jorion (1990) used a panel data test and rejected
the joint hypothesis of unit roots in each of a group of real exchange rates against an
alternative that they are stationary. See also Frankel and Rose (1996) and Wu (1996).
For a general econometric discussion see Im et al. (2002). The second branch uses
alternative forms of stationarity to AR or ARMA models such as fractional integration
(e.g., Mills, 1993) and nonlinear transition dynamics (e.g., Pesaran and Potter, 1997).
Recently, Balke and Fomby (1997) have popularised a joint analysis of nonstationar-

ity and nonlinearity in the context of threshold cointegration. In particular, using Monte
Carlo experiments based on the threshold autoregressive model with three regimes they
have shown that the power of the DF test falls dramatically with threshold parameters.
See also Pippenger and Goering (1993). Many other authors have attempted to address
similar issues in the context of a threshold autoregressive (TAR) model. For exam-
ple, papers by Enders and Granger (1998), Berben and van Dijk (1999), Caner and
Hansen (2001), Lo and Zivot (2001) and Kapetanios and Shin (2001) all form part of
the growing literature that examines the interplay between nonstationarity, cointegration
and nonlinearity.
In this paper, we analyse the implications of the existence of a particular kind of

nonlinear dynamics for unit root testing procedures, and provide an alternative frame-
work for a test of the null of a unit root process against an alternative of a nonlin-
ear exponential smooth transition autoregressive (ESTAR) process, which is globally
stationary. For a survey on the recent developments of STAR modelling see van Dijk
et al. (2002). There has been, however, no serious attempt to directly distinguish nonsta-
tionary linear systems from stationary nonlinear STAR ones. Sercu et al. (1995) show
that equilibrium models of real exchange rate determination in the presence of trans-
actions costs imply a nonlinear adjustment process toward PPP. Furthermore, Michael
et al. (1997) argue that conventional cointegration or unit root tests which ignore the
eIect of the STAR nonlinearity, may be biased against the long run PPP hypothesis.
To this end, we develop a test procedure that is speci0cally designed to have power
against the globally stationary ESTAR process.
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The current paper provides an advance over the existing literature in three senses.
First, we derive the nonstandard limiting distribution of the suggested tests. Second, we
conduct Monte Carlo simulation exercises and examine small sample size and power
performance of our proposed tests. We 0nd inter alia that under the alternative of a
globally stationary ESTAR process, our proposed test has a power gain over the DF
tests that is highest in the region of the null i.e., in cases where the processes are
highly persistent. Third, we provide an application to ex post real interest rates and
bilateral real exchange rates from the 11 major OECD countries, which demonstrates
the empirical worth of our approach. In particular, our proposed test is able to reject a
unit root in several cases where the DF tests fails to do so, providing some evidence
of nonlinear mean-reversion in both real interest and exchange rates.
The plan of the paper is as follows: Section 2 de0nes a globally stationary ESTAR

process, develops the proposed test statistics, derives their asymptotic distributions and
provides asymptotic critical values. Section 3 addresses the issue of the small sample
performance of the proposed tests that take account of the speci0c nonlinear nature
of the alternative. Section 4 presents empirical applications. Section 5 contains some
concluding remarks. Mathematical proofs are proved in the appendix.

2. Testing the null of a unit root against the alternative of a globally stationary
ESTAR process

Consider a univariate smooth transition autoregressive of order 1, STAR(1) model,

yt = �yt−1 + �yt−1�(�;yt−d) + 	t ; t = 1; : : : ; T; (1)

where 	t ∼ iid(0; 
2), and � and � are unknown parameters. To begin with we assume
that yt is a mean zero stochastic process. We discuss processes with nonzero mean
and/or with a linear time trend after Theorem 2.1. Following the literature on STAR
models, the transition function adopted here is of the exponential form, i.e.,

�(�;yt−d) = 1− exp(−�y2
t−d); (2)

where we assume that �¿ 0, and d¿ 1 is the delay parameter. The exponential tran-
sition function is bounded between zero and 1, i.e. � :R→ [0; 1] has the properties:

�(0) = 0; lim
x→±∞�(x) = 1

and is symmetrically U-shaped around zero.1

1 An alternative nonlinear adjustment scheme to the one favoured in this paper is given either by the
0rst-order logistic function, �(�; yt−d) = 2=(1 + exp(−�yt−d))− 1, which is bounded between −1 and 1,
or by the second-order logistic function, �(�; yt−d) = 2=(1 + exp(−�y2t−d))− 1, which is bounded between
0 and 1. In other applications this scheme might be useful, but here we focus on the exponential case.
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Using (2) in (1) we obtain an exponential STAR (ESTAR) model,

yt = �yt−1 + �yt−1[1− exp(−�y2
t−d)] + 	t ; (3)

which can be conveniently reparameterised as

Oyt = �yt−1 + �yt−1[1− exp(−�y2
t−d)] + 	t ; (4)

where � = � − 1. If � is positive, then it eIectively determines the speed of mean
reversion. Representation (3) makes economic sense in that many economic models
predict that the underlying system tends to display a dampened behaviour towards an
attractor when it is (suPciently far) away from it, but that it shows some instability
within the locality of that attractor. In assets markets too there are applications. If the
diIerential between the risk adjusted returns on two assets is wide, the pro0tability of
“arbitrage” is higher than when this diIerential is low due to the existence of 0xed
transactions costs. As a result the speed of reversion to equilibrium, i.e., the speed with
which returns are equalised varies inversely with the size of the diIerential itself.
The application that motivates our model is that of Sercu et al. (1995) and of Michael

et al. (1997). These authors analyse nonlinearities in the PPP relationship. They adopt
a null of a unit root for real exchange rates and have an alternative hypothesis of
stationarity, namely the long run PPP. Their theory suggests that the larger the deviation
from PPP, the stronger the tendency to move back to equilibrium. In the context of
our model, this would imply that while �¿ 0 is possible, we must have �¡ 0 and
�+�¡ 0 for the process to be globally stationary. Under these conditions, the process
might display unit root or explosive behaviour in the middle regime for small y2

t−d,
but for large y2

t−d, it has stable dynamics and as a result is geometrically ergodic.
They claim that the ADF test may lack power against such stationary alternatives and
one of the contributions of this paper is to provide an alternative test designed to have
power against such an ESTAR processes.
More formally, geometric ergodicity and the associated asymptotic stationarity can

be established by the drift condition of Tweedie (1975). A variant of the condition
states that an irreducible aperiodic Markov chain yt is geometrically ergodic if there
exists constants �¡ 1; B; L¡∞ and a small set C such that

E[‖yt‖ |yt−1 = y]¡�‖y‖+ L ∀y �∈ C; (5)

E[‖yt‖ |yt−1 = y]6B ∀y∈C: (6)

The concept of the small set is the equivalent of a discrete Markov chain state in a
continuous context. For more details see Tweedie (1975), Balke and Fomby (1997)
and Kapetanios (1999). Now using this we show under �¿ 0 that the condition we
need for geometric ergodicity of model (3) is in fact |� + �|¡ 1 or |� + �|¡ 0.
First, if |� + �|¡ 1, then there exists some 0nite y∗¿ 0 such that for all y¡ − y∗

and y¿y∗; � + �[1 − exp(−�y2)]¡ 1, where 0¡ 1 − exp(−�y2)¡ 1 and �¿ 0.
De0ne the small set C = [−y∗; y∗]. Then, by the 0niteness of E(|	t |), condition (6) is
easily seen to be satis0ed. We then need to prove that condition (5) holds. But, since
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� + �[1− exp(−�y2)]¡ 1, it follows that

E[‖yt‖ |yt−1 = y]6 ‖� + �[1− exp(−�y2)]‖‖y‖+ L

for all y �∈ C and for some 0nite L. Therefore, geometric ergodicity is proved for the
ESTAR process given by (3). 2

Following the practice in the literature (e.g. Balke and Fomby, 1997, in the context
of TAR models and Michael et al., 1997 in the context of ESTAR models), we impose
�=0 in (4), implying that yt follows a unit root process in the middle regime. We now
consider a null hypothesis that is a special case of a linear unit root which in terms of
the above model implies that �=0 and �=0. Under the alternative hypothesis (�=0
but �¿ 0), then yt follows a nonlinear but globally stationary process provided that
−2¡�¡ 0, which we assume holds. In practice, there is likely to be little theoretical
or prior guidance as to the value of the delay parameter d. We would suggest that d
be chosen to maximise goodness of 0t over d = {1; 2; : : : ; dmax}. In what follows, to
clarify ideas and in keeping with empirical practice to date (as in for example Michael
et al.), we set d= 1.
Imposing �= 0 and d= 1 gives our speci0c ESTAR model (4) as

Oyt = �yt−1{1− exp(−�y2
t−1)}+ 	t : (7)

We might expect that the standard linear ADF test may not be very powerful when
the true process is stationary but nonlinear, so we will develop a testing framework for
this context. Our test directly focuses on a speci0c parameter, �, which is zero under
the null and positive under the alternative. Hence we test

H0:�= 0 (8)

against the alternative

H1:�¿ 0: (9)

Obviously, testing the null hypothesis (8) directly is not feasible, since � is not iden-
ti0ed under the null. See for example Davies (1987). To overcome this problem, we
follow Luukkonen et al. (1988), and derive a t-type test statistic. If we compute a
0rst-order Talyor series approximation to the ESTAR model under the null, we get the
auxiliary regression

Oyt = �y3
t−1 + error: (10)

This suggests that we could obtain the t-statistic for �= 0 against �¡ 0 as 3

tNL = �̂=s:e:(�̂); (11)

2 The general case for lags of p¿ 1 and d¿ 1 may be similarly proved by de0ning a Markov chain as
yt = (yt−1; : : : ; yt−max(p;d)) and carrying out similar steps.

3 An LM-type test statistic may be obtained via a similar route. See Granger and TerSasvirta (1993) and
TerSasvirta (1994) for more details. The advantage of the t-test over the LM-test is that the t-test deals with
one sided alternatives of stationarity explicitly, and thus is expected to be more powerful.
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where �̂ is the OLS estimate of � and s:e:(�̂) is the standard error of �̂. Our test
is motivated by the fact that the auxiliary regression is testing the signi0cance of the
score vector from the quasi-likelihood function of the ESTAR model, evaluated at �=0.
Unlike the case of testing linearity against nonlinearity for the stationary process, the
tNL test does not have an asymptotic standard normal distribution.

Theorem 2.1. Under the null of a unit root (8) the tNL statistic de)ned by (11) has
the following asymptotic distribution:

tNL ⇒ { 1
4W (1)4 − 3

2

∫ 1
0 W (r)2 dr}√∫

W (r)6 dr
; (12)

where W (r) is the standard Brownian motion de)ned on r ∈ [0; 1]. Under the alter-
native hypothesis (9) with the ESTAR model (7), the tNL statistic is consistent.

Proof. See the appendix.

To accommodate stochastic processes with nonzero means and/or linear deterministic
trends, we need the following modi0cations. In the case where the data has nonzero
mean, i.e., where xt = � + yt , we use the de-meaned data yt = xt − Tx, where Tx is the
sample mean. In this case the asymptotic distribution of the tNL statistic is basically
the same as (12), except that W (r) is replaced by the de-meaned standard Brownian
motion W̃ (r) de0ned on r ∈ [0; 1]. Similarly, for the case with nonzero mean and
nonzero linear trend, i.e., where xt =�+ �t+yt , we use the de-meaned and de-trended
data yt = xt − �̂ − �̂t, where �̂ and �̂ are the OLS estimators of � and �. Now the
associated asymptotic distributions are such that W (r) is replaced by the de-meaned
and de-trended standard Brownian motion Ŵ (r).
In nonlinear models, the modelling of intercepts and trends is not straightforward.

In particular, our use of de-meaned and/or de-trended data implies a speci0c view
of the way that the intercept and/or trend enter the model under the alternative. We
should stress that although 0nite sample power may be aIected, our suggested testing
procedure is asymptotically similar with respect to intercepts or time trends.
Asymptotic critical values of the tNL statistics for the above three cases, denoted

Case 1, Case 2 and Case 3, respectively, have been tabulated via stochastic simulations
with T = 1; 000 and 50,000 replications, and presented in Table 1.

Table 1
Asymptotic critical values of tNL statistic

Fractile (%) Case 1 Case 2 Case 3

1 −2:82 −3:48 −3:93
5 −2:22 −2:93 −3:40

10 −1:92 −2:66 −3:13

Note: Case 1, Case 2 and Case 3 refer to the underlying model with the raw data, the de-meaned data
and the de-trended data, respectively.
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We now consider the more general case where the errors in (7) are serially correlated.
Assuming that these serially correlated errors enter in a linear fashion, then following
the well-established Dickey and Fuller (1979) and Said and Dickey (1984) corrections,
we may extend model (7) to

Oyt =
p∑
j=1

�jOyt−j + �yt−1{1− exp(−�y2
t−1)}+ 	t ; (13)

where 	t ∼ iid(0; 
2). The tNL statistic for testing � = 0 in this set up is given by the
same expression as in (11), where �̂ is the OLS estimate of � and s:e:(�̂) is the standard
error of �̂ obtained from the following auxiliary regression with the p augmentations:

Oyt =
p∑
j=1

�jOyt−j + �y3
t−1 + error: (14)

Theorem 2.2. Consider the nonlinear ADF regression (13). Under the null (8) the
tNL statistic obtained from (14) has the same asymptotic distribution as obtained
under nonserially correlated errors. Under the alternative hypothesis, the tNL statistic
is consistent.

Proof. See the appendix.

In practice, the number of augmentations p must be selected prior to the test. We
would propose that standard model selection criteria or signi0cance testing procedure be
used for this purpose because under the null of a linear model, the properties of these
criteria are well understood. 4 See Ng and Perron (1995) for a thorough discussion on
the lag selection in the linear univariate models. In fact this is the approach taken in
most STAR models, see, for example, van Dijk et al. (2002).

3. Small sample properties

In this section, we undertake a small-scale Monte Carlo investigation of the small
sample size and power performance of our proposed tNL test, and compare it with that
of the Dickey–Fuller test. 5 We also consider the F-test recently proposed by Enders
and Granger (1998) that is designed to have power against the two-regime stationary

4 The augmentations may enter in a nonlinear way. In such cases, we would view the use of linear
augmentations as a 0rst-order approximation to the underlying dynamics rather than a strict view about
the exact nature of the dynamic process itself. Of course the criteria and resultant lag selection will have
implications for power but this problem plagues all unit root tests that use parametric corrections for auto-
correlation. Alternatively, we would follow the semi-parametric correction method advanced by Phillips and
Perron (1988).

5 In a further case, we relax our maintained assumption, � = 0 in (7), and consider an F-type test for
� = � = 0 in the following auxiliary regression: Oyt = �yt−1 + �y3t−1 + 	t . This F-type test tends to
under-reject somewhat. More importantly, as expected, its power is relatively poor as compared to the tNL
test in most cases considered. These simulation results are available upon request.
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Table 2
The size of alternative tests

Case 1 Case 2 Case 3

tNL EG DF tNL EG DF tNL EG DF

� = 0
T = 50 0.042 0.029 0.051 0.044 0.019 0.055 0.047 0.013 0.059
T = 100 0.045 0.037 0.049 0.046 0.028 0.050 0.048 0.028 0.058
T = 200 0.050 0.040 0.045 0.046 0.032 0.047 0.048 0.035 0.051

� = 0:5
T = 50 0.046 0.036 0.053 0.051 0.018 0.054 0.065 0.013 0.066
T = 100 0.046 0.043 0.050 0.052 0.029 0.050 0.057 0.028 0.060
T = 200 0.049 0.045 0.047 0.047 0.032 0.047 0.053 0.039 0.056

Note: To compute the rejection probabilities, the data under the null is generated by (16).

TAR processes given by

Oyt =

{
�1yt−1 + ut if yt−16 0

�2yt−1 + ut if yt−1¿ 0

}
; t = 1; 2; : : : ; T: (15)

The Enders and Granger F-statistic (hereafter EG) tests for �1 = �2 = 0 in (15). 6

Since the tests are similar with respect to intercepts and/or time trends and for the
sake of simplicity, we set trend and intercept parameters to zero. In the 0rst set of
experiments we focus on the size of the tests and thus construct the null model with
possibly serially correlated errors by

yt = yt−1 + 	t with 	t = �	t−1 + ut ; (16)

where ut is drawn from the standard normal distribution, and we consider �= {0; 0:5}.
Secondly, in order to evaluate the power of alternative tests against globally station-

ary ESTAR processes, we generate the DGP as follows:

Oyt = �yt−1[1− exp(−�y2
t−1)] + 	t ; (17)

where 	t ∼ N(0; 1). In particular, we choose a broad range of parameter values for
�= {−1:5;−1;−0:5;−0:1} and �= {0:01; 0:05; 0:1; 1} for a general power comparison.

For each experiment, we have computed the rejection probability of the null hypoth-
esis. The nominal size of the tests is set at 0:05, the number of replications at 20; 000
and the sample size is considered for T = 50; 100; 200.
Table 2 presents results on the size of the various tests. All sizes for the tNL test

are close to the nominal level of 5% even in the presence of serially correlated errors

6 Enders and Granger (1998) implicitly assume that a threshold value is known. Like our testing procedure,
the de-meaned data and the de-trended data are then used, respectively, to accommodate stochastic processes
with nonzero means and/or linear deterministic trends. The distribution of the F-statistic for the three cases
are also nonstandard, and their asymptotic critical values are tabulated via simulation. The 95% critical
values are 3.75, 4.56 and 6.08 for Cases I, II and III, respectively.
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(in this case we use the correct speci0cation with one augmentation for all the tests),
whereas the EG test tends to under-reject when the sample size is relatively small.
We next turn to the power performance of the tests, which is summarised in Table

3(a)–(c). A general 0nding is that our suggested tNL test is relatively more powerful
when � is relatively small regardless of the values of �. For example, when looking at
Table 3(b) with � = 0:01 and �=−1, the powers of the tNL test are 0.183 and 0.488
for T =50 and 100, whereas those of the DF test are 0.160 and 0.341. But, this power
gain decreases as � increases. In fact, when � is suPciently large (e.g., � = 1), the
power of the Dickey–Fuller test dominates. This is not a surprising 0nding because
as � grows large, the model becomes approximately linear. Notice also in this case
that the power of all tests are close to 1 unless � is very small. Interestingly, in our
application below we 0nd that the estimates of � (which we obtain under the constraint
that � = −1) are indeed quite small, ranging as they do between 0.01 and 0.1. Our
simulation result clearly shows that over this range of � our suggested tests are more
powerful than the DF tests. In general, it is hard to get an exact de0nition of “small”
and “large” � because it is not a scale-free parameter. But, it is easily seen that given
the values of 
2 and �, as � grows, E(e−�y2t−1 ) decreases and the series becomes less
persistent, where we note that the term e−�y2t−1 here measures the size of the largest
root of the series at time t. For example, we 0nd via simulation that for 
2 = 1 and
�=−1 with T = 1; 000, the average sample values of e−�y2t−1 are 0.95, 0.89, 0.83 and
0.34 for � = 0:01; 0.05, 0.1 and 1, respectively. The power performance of the tests
aforementioned then implies that the tNL test performs best relative to the ADF test
in the region of the null, where the series is relatively more persistent (in this regard,
the relatively small value of � is associated with the relatively more persistent series).
Considering that most economic time series are likely to be highly persistent or stay
near unit root, this might be a useful 0nding at least empirically.
By contrast, the power of the EG test is quite poor in most cases, unless both the

sample size and � are suPciently large. This implies that the unit root test derived
in the nonlinear TAR framework does not seem to be powerful against the nonlinear
STAR processes. 7

To further investigate and thus highlight the relative power performance of alternative
tests, we consider a third set of experiments in which the DGP is given by

Oyt = �yt−1 + �yt−1[1− exp(−�y2
t−1)] + 	t ; (18)

where � = 0:1; 	t ∼ N(0; 1); � = {−1:5;−1;−0:5} and � = {0:01; 0:05; 0:1; 1}. As
discussed earlier, under these parameter values, the process is locally explosive but
still globally geometrically ergodic. Though this case is not explicitly covered in our
theoretical discussion (i.e., under the maintained assumption �=0), it is also of interest
for empirical work. Table 4 presents the simulation results for this experiment. The
picture is similar to before, but now the power gain of our tNL test over the DF test is

7 This is also partially due to the EG test being under-sized. Since its power is much lower than the tNT
test in most cases we do not attempt to compute the size-adjusted power.
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Table 3

� = 0:01 � = 0:05 � = 0:1 � = 1

tNL EG DF tNL EG DF tNL EG DF tNL EG DF

(a) The power of alternative tests: Case 1
� =−1:5
T = 50 0.629 0.067 0.470 0.984 0.668 0.995 0.999 0.968 1.0 1.0 1.0 1.0
T = 100 0.980 0.461 0.984 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
T = 200 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−1:0
T = 50 0.458 0.047 0.298 0.940 0.338 0.953 0.989 0.769 0.998 1.0 1.0 1.0
T = 100 0.930 0.249 0.895 1.0 0.992 1.0 1.0 1.0 1.0 1.0 1.0 1.0
T = 200 1.0 0.973 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:5
T = 50 0.232 0.033 0.154 0.706 0.292 0.631 0.869 0.241 0.899 0.968 0.940 1.0
T = 100 0.695 0.105 0.518 0.990 0.781 0.998 0.999 0.966 1.0 1.0 1.0 1.0
T = 200 0.992 0.584 0.995 1.0 0.997 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:1
T = 50 0.071 0.027 0.073 0.153 0.032 0.130 0.205 0.039 0.181 0.269 0.079 0.347
T = 100 0.147 0.040 0.112 0.426 0.082 0.345 0.529 0.127 0.521 0.564 0.317 0.780
T = 200 0.480 0.087 0.329 0.872 0.349 0.920 0.905 0.590 0.984 0.883 0.891 0.998

(b) The power of alternative tests: Case 2
� =−1:5
T = 50 0.250 0.085 0.195 0.826 0.521 0.797 0.968 0.911 0.984 1.0 1.0 1.0
T = 100 0.692 0.377 0.543 0.998 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0
T = 200 0.992 0.995 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−1:0
T = 50 0.183 0.060 0.160 0.626 0.264 0.519 0.855 0.617 0.868 0.997 1.0 1.0
T = 100 0.488 0.225 0.341 0.980 0.969 0.993 0.999 1.0 1.0 1.0 1.0 1.0
T = 200 0.955 0.910 0.963 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:5
T = 50 0.108 0.035 0.121 0.296 0.077 0.242 0.469 0.192 0.408 0.794 0.845 0.968
T = 100 0.244 0.118 0.188 0.781 0.535 0.731 0.936 0.900 0.970 0.993 1.0 1.0
T = 200 0.725 0.474 0.590 0.997 0.975 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:1
T = 50 0.060 0.020 0.080 0.080 0.027 0.100 0.090 0.035 0.111 0.106 0.052 0.142
T = 100 0.086 0.040 0.093 0.146 0.081 0.146 0.191 0.110 0.187 0.255 0.212 0.331
T = 200 0.156 0.100 0.142 0.433 0.270 0.370 0.556 0.457 0.577 0.620 0.767 0.854

(c) The power of alternative tests: Case 3
� =−1:5
T = 50 0.164 0.048 0.171 0.655 0.267 0.605 0.900 0.676 0.926 1.0 1.0 1.0
T = 100 0.441 0.220 0.361 0.985 0.983 0.997 1.0 1.0 1.0 1.0 1.0 1.0
T = 200 0.948 0.917 0.965 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−1:0
T = 50 0.120 0.036 0.141 0.429 0.135 0.374 0.691 0.327 0.688 0.985 0.997 1.0
T = 100 0.277 0.144 0.243 0.910 0.811 0.934 0.992 0.974 0.999 1.0 1.0 1.0
T = 200 0.815 0.666 0.776 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:5
T = 50 0.082 0.023 0.109 0.181 0.059 0.197 0.287 0.099 0.297 0.611 0.554 0.875
T = 100 0.141 0.084 0.151 0.535 0.319 0.498 0.784 0.649 0.830 0.969 1.0 1.0
T = 200 0.440 0.291 0.375 0.975 0.988 0.996 0.996 1.0 1.0 1.0 1.0 1.0
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Table 3 (continued)

� = 0:01 � = 0:05 � = 0:1 � = 1

tNL EG DF tNL EG DF tNL EG DF tNL EG DF

� =−0:1
T = 50 0.053 0.017 0.078 0.062 0.020 0.092 0.066 0.024 0.099 0.081 0.030 0.119
T = 100 0.062 0.035 0.082 0.091 0.061 0.116 0.110 0.076 0.138 0.145 0.123 0.216
T = 200 0.098 0.077 0.108 0.230 0.179 0.241 0.320 0.280 0.359 0.410 0.541 0.644

Note: To compute the rejection probabilities, the data under the alternative is generated by (17).

for some cases even greater. For example, when looking at Table 4(b) with � = 0:01
and �=−1:5, the power of the tNL test is 0.220, 0.493 and 0.919 for T =50; 100; 200,
respectively, whereas the corresponding numbers for the DF test are 0.211, 0.247,
0.782.

4. Empirical application: real interest rates and real exchange rates

The apparent unit root behaviour in real interest rates and real exchange rates has
become an awkward puzzle for economists. We argued above that transactions costs in
0nancial assets markets are likely to lead to nonlinear speeds of convergence to equi-
librium of rates of return. In the context of real interest rates, the Fisher hypothesis
predicts that the long run equilibrium value stays around common constant. The ap-
parent nonstationarity of real interest rates clearly violates this hypothesis creating the
interest rate paradox referred to above, see Rose (1988) and Barro and Sala-i-Martin
(1990) for a further discussion. The diPculty of rejecting a unit root in real exchange
rates also implies similar problems because nonstationarity here implies potentially un-
bounded gains from arbitrage in traded goods.
Owing to transaction costs and other frictions, it is quite plausible that the more

these variables deviate from their equilibrium values, the larger will be the invest-
ment/arbitrage adjustment Wows that drive them back again. If so, the results in this
paper suggest that the failure to reject the unit root may be due to the lack of power
of the standard ADF test traditionally used in this context, and thus we suggest to use
the tNL procedure as well. Here we apply the tNL test to ex post real interest rates
and bilateral real exchange rates from the eleven major OECD economies and we also
estimate the alternative ESTAR models.
Quarterly data on ex post short term real interest rates, 8 and real bilateral exchange

rates with the US dollar for the major economies of the EU (France, Germany, Italy, the
Netherlands, Spain and the UK), N.America (Canada and the US), Australasia (Aus-
tralia and New Zealand) and Japan were collected from the International Financial

8 Because the diIerence between ex ante and ex post rates is a forecast error, which in most economic
worlds is a stationary nonpersistent process (white noise under rational expectations), this measurement error
is unlikely to have a profound impact on our inferences.



370 G. Kapetanios et al. / Journal of Econometrics 112 (2003) 359–379

Table 4

� = 0:01 � = 0:05 � = 0:1 � = 1

tNL EG DF tNL EG DF tNL EG DF tNL EG DF

(a) The power of alternative tests: Case 1
� =−1:5
T = 50 0.545 0.019 0.120 0.979 0.393 0.971 0.998 0.898 0.999 1.0 1.0 1.0
T = 100 0.974 0.068 0.661 1.0 0.997 1.0 1.0 1.0 1.0 1.0 1.0 1.0
T = 200 1.0 0.768 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−1
T = 50 0.321 0.014 0.047 0.917 0.119 0.798 0.983 0.506 0.987 1.0 1.0 1.0
T = 100 0.898 0.028 0.237 1.0 0.806 1.0 1.0 0.999 0.999 1.0 1.0 1.0
T = 200 1.0 0.191 0.974 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:5
T = 50 0.066 0.012 0.015 0.582 0.027 0.223 0.786 0.070 0.597 0.916 0.763 0.997
T = 100 0.458 0.013 0.017 0.977 0.157 0.877 0.996 0.636 0.997 0.998 1.0 1.0
T = 200 0.989 0.019 0.139 1.0 0.965 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(b) The power of alternative tests: Case 2
� =−1:5
T = 50 0.220 0.074 0.211 0.763 0.333 0.594 0.951 0.794 0.948 1.0 1.0 1.0
T = 100 0.493 0.215 0.247 0.994 0.986 0.997 1.0 1.0 1.0 1.0 1.0 1.0
T = 200 0.919 0.678 0.782 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−1
T = 50 0.180 0.042 0.217 0.519 0.168 0.316 0.787 0.396 0.683 0.992 0.999 1.0
T = 100 0.307 0.194 0.244 0.943 0.777 0.909 0.996 0.996 0.999 1.0 1.0 1.0
T = 200 0.734 0.358 0.351 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:5
T = 50 0.155 0.022 0.221 0.205 0.080 0.191 0.323 0.117 0.236 0.646 0.589 0.849
T = 100 0.254 0.127 0.351 0.554 0.234 0.307 0.819 0.529 0.703 0.970 1.0 1.0
T = 200 0.345 0.308 0.316 0.961 0.894 0.955 0.998 1.0 1.0 1.0 1.0 1.0

(c) The power of alternative tests: Case 3
� =−1:5
T = 50 0.167 0.043 0.190 0.584 0.181 0.436 0.860 0.503 0.832 1.0 1.0 1.0
T = 100 0.309 0.168 0.247 0.969 0.886 0.968 0.999 0.999 1.0 1.0 1.0 1.0
T = 200 0.777 0.458 0.520 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−1
T = 50 0.137 0.026 0.184 0.344 0.101 0.268 0.601 0.205 0.498 0.969 0.989 1.0
T = 100 0.219 0.142 0.234 0.818 0.505 0.694 0.977 0.942 0.987 1.0 1.0 1.0
T = 200 0.491 0.299 0.326 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
� =−0:5
T = 50 0.113 0.015 0.173 0.145 0.046 0.176 0.197 0.070 0.209 0.442 0.306 0.666
T = 100 0.192 0.072 0.280 0.322 0.169 0.259 0.580 0.314 0.476 0.899 0.988 0.998
T = 200 0.265 0.257 0.318 0.854 0.640 0.734 0.981 0.986 0.996 0.998 1.0 1.0

Note: To compute the rejection probabilities, the data under the alternative is generated by (18).

Statistics CD-Rom (2001 release date), covering the period 1957(1)–2000(3) for inter-
est rates and 1957(1)–1998(4) for exchange rates. The price deWators used throughout
were consumer price indices and the nominal interest rate variables used were treasury
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bill rates for Canada, the UK and US, call money rates for France, Germany, Japan
and Spain, and discount rates for Italy, the Netherlands and New Zealand. 9

Figs. 1 and 2 plot the real interest rates and real exchange rates. The theories predict
that the series should be untrended and this appears generally to be the case with two
notable exceptions, namely, the Canadian and Japanese real exchange rates. 10 Both
sets of series are highly volatile and persistent. In the case of real exchange rates, for
example, volatility increases after the break up of the Bretton Woods system in 1972.
Because neither theory nor empirics support the idea of a trend in either real interest

rates or real exchange rates, the relevant tNL statistic is that based on de-meaned data.
An AR(8) regression model for Oyt was estimated for each series, and insigni0cant
augmentation terms were excluded. Then, regression (13) with selected augmentations
was estimated to compute the test statistics. The test and estimation results are sum-
marised in Table 5.
To examine the issue of time varying volatility more generally, we also computed

Breusch Pagan $2 tests for ARCH eIects and these are presented in columns 2 and 7 of
Table 5. This con0rms that as is often the case with 0nancial variables, ARCH eIects
are prominent in several series. This may raise two problems. First, heteroscedasticity
will interfere with inference on the appropriate number of augmentations to be included
for the test. Second, the power of both the tNT and ADF tests may be aIected, though
the asymptotic size of both tests is not aIected by the existence of heteroscedasticity.
We addressed the 0rst issue by using heteroscedastic consistent standard errors in
regressions determining the augmentation terms, but we can do little about the second
issue. However, there is no prior reason to suppose that the power of our test is
less or more aIected by heteroscedasticity than that of the ADF test, so in this sense
comparison with the ADF test remains “fair”.
For real interest rates, the ADF test rejects in 2 out of 11 cases at the 5% signi0cance

level (Germany and Japan), and rejects another (Spain) at the 10% signi0cance level.
By contrast the tNL test yields 5 signi0cant statistics at the 5% level and 2 additional
cases at the 10% level, giving much stronger overall support to the long run Fisher

9 Interest rate data for Spain prior to 1974 was not available so the sample for this country is restricted
to 1974(1)–2000(3). Similarly, the Euro-zone exchange rates were only available until 1998(4). The last 24
quarterly data points for the Netherlands had to be extrapolated using Treasury Bill Rate movements, and the
last 4 quarters for the UK and US had to be extrapolated using call money rates. For Australia the 2 year
government bond yield was used because it was the only short to medium term rate for which a suPciently
long time series was available. In general the decision favouring one rate over another was entirely driven
by availability over the relevant quarterly time span but casual experimentation with the data showed that
all of the possible short term rates were very coherent within each respective country.
10 The Canadian dollar and Japanese Yen real exchange rates exhibit secular depreciation and appreciation

respectively against the US dollar during the sample period and any trend in real exchange rates would
constitute a rejection of long run PPP in its simplest form. However, as has often been pointed out in the
literature, the existence of secular diIerential rates of productivity growth between two countries induces a
trend in PPP relationships—the so-called Balassa–Samuelson eIect. To investigate the existence and nature
of this trend for Japan and Canada would require data on relative productivity growth and this is beyond the
scope of the current paper. In the meantime, we should note that it is unlikely that the unit root hypothesis
in either of these two cases will be rejected by either the ADF or tNL tests considered below.
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Fig. 1. Real interest rates.

hypothesis. For real exchange rates, the ADF test is unable to reject a unit root for
any of the countries at the 5% signi0cance level, although in the case of New Zealand
and Italy it can reject at the 10% signi0cance level. Again the tNL test improves the
situation rejecting the null in 5 cases at the 5% signi0cance level and another at the
10% signi0cance level, giving stronger support to simple long run PPP.
Table 5 also displays the estimation results of ESTAR models. Initial estimation

found � to be very poorly identi0ed, a result that has been found elsewhere (e.g.,
Taylor et al., 2001). As a consequence, we follow the procedure of the numerical
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Fig. 2. Real bilateral exchange rates with the US dollar.

section above and set � to minus unity. 11 All estimates of � except for the Canadian
real exchange rate are correctly signed. 12 Although the t-ratio does not provide a valid

11 We experimented with diIerent values for �, but found that it made no qualitative diIerence to the
results in terms of the signi0cance of �. For example, whilst halving � to −0:5 resulted broadly speaking in
a trebling of the value for �, the signi0cance or more correctly, the numerical value of its t-ratio, was not
greatly aIected.
12 The perverse coePcient for this case that implies explosive behaviour under the alternative was perhaps

to be expected for reasons outlined in the footnote 10. In fact, we have also reestimated the regression
model with de-trended data for both the Canadian dollar and Japanese Yen, and found that both tNL and
ADF tests cannot reject the null of unit root for the former, but can reject it for the latter. In the case of
Canada, detrending also gets rid of the perverse sign of �̂.
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Table 5
Unit root test results for 11 real interest rates and 10 bilateral real exchange rates

Real interest rates Real exchange rates

Country $28 ADF tNL �̂ s:e:(�̂) $28 ADF tNL �̂ s:e:(�̂)

AU 26:0∗ −2:07 −2:06 0:020 0:011 22:7∗ −2:55 −3:95∗ 0:032 0:009
CA 6:22 −2:45 −2:72∗∗ 0:045 0:019 4:76 −0:61 0:54 −0:002 0:004
FR 2:90 −2:34 −4:23∗ 0:100 0:030 13:3 −2:54 −2:93∗ 0:022 0:008
GE 13:7∗∗ −3:44∗ −2:96∗ 0:079 0:045 22:8∗ −1:95 −2:70∗∗ 0:024 0:009
IT 30:6∗ −2:47 −3:51∗ 0:037 0:013 5:20 −2:59∗∗ −4:07∗ 0:024 0:007
JA 26:3∗ −4:27∗ −2:26 2:33 1:58 7:53 −1:18 −1:49 0:006 0:004
NE 22:2∗ −1:58 −2:71∗∗ 0:077 0:041 16:9∗ −1:83 −1:89 0:013 0:007
NZ 48:6∗ −1:75 −6:14∗ 0:080 0:025 10:2 −2:87∗∗ −3:37∗ 0:020 0:006
SP 39:6∗ −2:70∗∗ −3:40∗ 0:019 0:009 7:75 −1:59 −2:22 0:015 0:007
UK 40:9∗ −2:24 −0:55 0:003 0:005 2:50 −1:78 −3:61∗ 0:029 0:009
US 23:9∗ −2:56 −1:93 0:024 0:013

Note: $28 stands for the Breusch–Pagan test for ARCH(8) eIects with eight degrees of freedom. The tNL
and DF statistics are computed using the de-meaned data in a regression model (13) with a maximum of
eight augmentations, where the insigni0cant augmentation terms in a companion AR(8) model for Oyt were
excluded. In all cases ∗ and ∗∗ denote signi0cance at 5% and 10% level. �̂ is estimated imposing � =−1,
and s:e:(�̂) indicates a standard error.

signi0cance test in the usual way, the 95% asymptotic con0dence intervals computed
under the alternative for � include zero in only 6 out of 21 cases; namely, the German,
UK and US real interest rates and the Canadian, Japanese and Dutch real exchange rate
(with the last of these only marginally including zero). It is interesting to note that,
with the exception of the Spanish real exchange rate, whenever tNL is signi0cant at
either the 5% or 10% level, then the t-ratio for �̂ exceeds 1:96 and vice versa. Finally,
with the exception of Japanese real interest rates, all estimates of � lie in the range
[0:01; 0:1]. This was exactly the range of � that formed the focus for the numerical
experiments on test power in Section 3 above. Thus, it follows that our simulations
have indeed focused on an empirically meaningful range of �. 13

To get a feel for the inWuence of the nonlinear terms on persistence of the series,
we have plotted one minus the transition function, e−�̂y2t−1 , in each case. In the absence
of augmentation terms, this term measures the single root of the time series at time
t conditional on a yt−1 value. 14 Note that when each series is at its mean, the root
is unity by construction, and the series is locally nonstationary. But, when it is away
from its mean, the series exhibits mean reversion. Figs. 3 and 4 present these results.

13 We noted above that � is not scale invariant. However, the standard deviation of our data (unity) is
roughly the same as that of the data in the numerical experiments (between unity and two).
14 The plots are drawn for yt−1 values in the range (−2; 2) because apart from a very few observations

in a few cases, each of the series varied within two standard deviations of its respective mean implying that
the normalised data lay (more or less) in the range ±2.
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Fig. 3. One minus the estimated transition function (e−�̂y2t−1 ) for real interest rates.

Fig. 4. One minus the estimated transition function (e−�̂y2t−1 ) for real exchange rates.

From Fig. 3 we 0nd that the Japanese real interest rate has the most important
nonlinear mean-reversion eIects. For example, a two standard deviation shock away
from its mean would be followed by a near 100% correction back towards its mean
during the next period. We should note, however, that the standard error of �̂ here
is so large that the 95% con0dence interval includes zero, and that the tNL test fails
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to reject a unit root. After Japan, the French real interest rate appears to have the
most sizeable nonlinear eIect with the corresponding reversion to mean following a
2 standard deviation shock being about 33%. By contrast the Japanese real exchange
rate displays little nonlinear adjustment with less than 5% of a two standard deviation
shock away from its mean being corrected the following period.
It is also interesting to note that although our tNL test yields p-values that are on the

whole less than the ADF , the case of Japanese interest rates shows a glaring exception.
Here, the p-value for the ADF is less than 1% but for tNL it exceeds 10%. However,
this case is one where �̂ is large and persistence is very low whilst the other cases
had, on the whole, small values of �̂ and thus displayed high persistence. This also
supports our assertion that tNL performs best relative to the ADF in the region of the
null and that when we are a long way from the null (high � and low persistence), the
model becomes approximately linear and thus the ADF comes back into its own again.
Overall, these results suggest that the tNL test is a useful supplementary statistic to

employ in standard unit root testing especially where the series is known to be highly
persistent but expected a priori to be stationary. The estimates also suggest that the
ESTAR model itself may provide a better alternative to a linear AR model in such
cases.

5. Concluding remarks

Empirical univariate analysis of nonstationarity against stationarity has been an in-
tegral part of time series econometrics. However, the emphasis of the earlier literature
was on the examination of the linear model, implicitly disregarding any possible nonlin-
earities in the series under consideration. This paper complements other recent studies
in trying to 0ll this vacuum. Its main contribution has been to develop a new unit root
test statistic designed to be more powerful against a stationary ESTAR processes than
the standard ADF test and to establish via Monte Carlo simulations and an empirical
application that the suggested testing procedure may be quite useful in practice.
As is always the case when working with nonlinear models there are several gener-

alisations and a number of alternative models that could be analysed in future work. As
noted in Section 2, one could consider diIerent types of transition function that allow
for asymmetric dynamic adjustment such as the logistic function. Again as noted in
Section 2, a more general STAR(p) model could be adopted where all the parameters
including coePcients on lagged 0rst diIerences of the dependent variable are subject
to the same nonlinear scheme. For extensions to nonlinear TAR models with unit roots
see also Caner and Hansen (2001). Other transition variates could be modelled such as
a linear combination of lagged endogenous variables (or 0rst diIerences), exogenous
variables or deterministic time trends. For a survey of extensions in the context of
stationary models, see van Dijk et al. (2002). Finally, although our test is univariate, it
could be extended to establish the existence of cointegrating equilibrium relationships
such as those said to govern real exchange rates. In this regard, a cointegration test
based on an error correction model subject to STAR nonlinearity is currently under
investigation.
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Appendix A.

A.1. Proof of Theorem 2.1

The asymptotic null distribution of the tNL statistic de0ned by (11) can be derived
as follows. First, under the null (8), Oyt = 	t , and therefore, we obtain

tNL =

∑T
t=1 y

3
t−1	t√


̂2
∑T

t=1 y
6
t−1

;

where 
̂2 is the least-squares estimate of 
2 from the auxiliary regression. It is easy
to show that 
̂2 →p 
2 under the null, so we only need to 0nd the asymptotics for∑T

t=1 y
3
t−1	t and

∑T
t=1 y

6
t−1. For the latter, it is easy to show (e.g., Chan and Wei,

1988) that

1
T 4

T∑
t=1

y6
t−1 ⇒ 
6

∫
W (r)6 dr;

whereas it follows directly from the continuous mapping theorem, weak convergence
of stochastic integrals and the semi-martingale property of 	t (e.g., Hansen, 1992) that

1
T 2

T∑
t=1

y3
t−1	t ⇒ 
4

∫
W (r)3 dW (r) = 
4

{
1
4
W (1)4 − 3

2

∫ 1

0
W (r)2 dr

}
:

Hence, (12) follows.
Next, under alternative (9), Oyt; yt−1 and y3

t−1 are I(0) and it is easy to show that

1
T

T∑
t=1

y3
t−1Oyt =Op(1);

1
T

T∑
t=1

y6
t−1 = Op(1):

Then, tNL =Op(T 1=2). Hence, the tNL statistic diverges to in0nity at rate T 1=2 under the
alternative.

A.2. Proof of Theorem 2.2

De0ne the T×p data matrix Z=(Oy−1; : : : ;Oy−p) with Oy−i=(Oy−i+1; : : : ;OyT−i),
and the T × T idempotent matrix MT = IT − Z(Z′Z)−1Z′. Now,


̂2 =
1
T
”′MT ” =

1
T
”′” + op(1)

p→
2;
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where ” = (	1; : : : ; 	T )′. Furthermore, under the null it is straightforward to show that

1
T 2 y

3′
−1MT ” =

1
T 2 y

3′
−1”t + op(1) ⇒ 
2LR


2

{
1
4
W (1)4 − 3

2

∫ 1

0
W (r)2 dr

}
;

1
T 4 y

3′
−1MTy3−1 =

1
T 4 y

3′
−1y

3
−1 + op(1) ⇒ 
6LR

∫
W (r)6 dr:

where y3−1=(y3
0 ; y

3
1 ; : : : ; y

3
T−1)

′ and 
2LR is the long-run variance of Oyt under the null.
Using these results, under the null we obtain

tNL =
1
T 2 y3

′
−1MT ”√


̂2 1
T 4 y3

′
−1MTy3−1

=
1
T 2 y3

′
−1”

1
T 4 y3

′
−1y

3
−1

+ op(1);

which as we have shown before has the asymptotic distribution given in (12).
Finally, along similar lines in the proof of Theorem 2.1, it is easily seen that the

tNL test is consistent under (9).
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